
Final Report: Video Game Recognition from Screenshots

Nikhil Devraj
devrajn@umich.edu

Victor Hao
vhao@umich.edu

Nolan Kataoka
nkataoka@umich.edu

Nicholas Kroetsch
kroetsch@umich.edu

Abstract

We apply contemporary computer vision techniques in
the effort to classify video games from their screenshots in
order to allow Twitch streamers to automatically change
their stream information as they switch games. We collect
our own dataset of Twitch and YouTube game screenshots,
with 60000 examples in 12 classes. We then compare the
Squeezenet architecture pretrained on ImageNet with our
own CNN architecture. We then analyze the results of these
networks, show that our own architecture performs better
than a pretrained network for this task, and apply this net-
work to a fully functional Twitch app prototype.

1. Introduction

The classification of video games from screenshots is an
increasingly relevant problem in the field of computer vi-
sion and social media. The ability to automatically detect
and classify which games a video is about or a streamer is
playing can be useful for the platforms that host these con-
tent creators. For example, when Twitch streamers stream
different games in succession, they may forget to manually
update their stream information. Failure to update stream
information results in miscategorization of streams in user
searches, which can lead to loss of potential viewership for
content creators and the streaming platforms themselves.
This problem is solvable using contemporary computer vi-
sion techniques since many games have very distinct fea-
tures that allow human viewers to recognize them instantly,
and a CNN is able to be trained on such features to classify
screenshots taken from gameplay video.

We approach this task using a dataset of screenshots
we have collected across a selection of games hosted on
YouTube and Twitch. Our approach utilizes these images
as inputs to a both pretrained SqueezeNet model that inputs
into an SVM to categorize the screenshot and a baseline
CNN classifier. While both models achieve statistically sig-
nificant levels of accuracy above random, our baseline CNN
classifier performs far better than the SqueezeNet classi-
fier with an accuracy of 95%. We then use our trained
CNN model inside a Twitch app that is capable of auto-

matically classifying the game a Twitch streamer is playing
and changing stream information as the streamer switches
games. By analyzing multiple screenshots over time, our
Twitch app is able to reach accuracy levels of greater than
99%.

2. Contributions
The inspiration for this project was original, and as a re-

sult there hasn’t been much related work on this problem.
We thought it best for us to use an established model as a
starting point to see what kind of performance a pre-trained
model can achieve, and compare its performance with a
very basic CNN that we designed. The pre-trained model
that we decided to use was SqueezeNet, which was origi-
nally developed by researchers at DeepScale, University of
California Berkeley, and Stanford University and trained on
the ImageNet data set.

We lifted the basic framework of the neural network
training code from starter code given in a University of
Michigan EECS 442 Computer Vision homework. The final
code used to run both our CNN and SqueezeNet are heav-
ily modified to work for our particular problem and dataset.
The code for our Twitch application is original and utilizes
the Twitch APIs to grab stream image information which is
used to make predictions.

We collected game recordings from videos on YouTube
and VODs from Twitch all coming from a variety of con-
tent creators and players. The script used to split the videos
into the frames which made up the dataset was written as an
original work.

3. Data
The data used for this project consists of 5000

224x224x3 frames of in-game screenshots from 12 popu-
lar video games, for a total of 60000 screenshots in the
dataset. This data was collected using a script that down-
loads YouTube videos of gameplay. We then manually
trimmed the clips to remove any streamer intro/outros and
out-of-game menu screens. The script then extracts one
frame every 5s of footage. These frames are resized to
224x224x3 and saved in our dataset folders.

The full list of games used is as follows:

1



• League of Legends
• Counter-Strike: Global Offensive
• Minecraft
• Fortnite
• Grand Theft Auto V
• FIFA ’20
• Hearthstone
• Super Smash Bros. Ultimate
• Rocket League
• Team Fortress 2
• Hollow Knight
• Slenderman

Figure 1: An example dataset image from League of Leg-
ends.

In order to collect 5000 screenshots for each game,
around 7 hours of footage was necessary per game. These
videos were trimmed to remove any content creator in-
tro/end sequences as well as any out-of-game menus or
screens. The videos used were specifically chosen to not
have any streamer overlays, facecams, or game modifica-
tions in order to ensure that these would not affect training.
However, a possible side effect of this is that streamer over-
lays may cause the classifier to produce incorrect output.

Some potential issues that may occur due to the limita-
tions of our dataset are:

• Updates to a game that change the UI or textures of a
game could potentially cause it to be misclassified.

• Some games have many maps and characters that each
look very distinct from one another, and if a very
unique map/gameplay feature is not included in the
dataset it could skew the results.

• Some games have multiple game modes with different
UIs which could cause different features to be recog-
nized than those in the training dataset.

• Many streamers have stream overlays, facecams, or
game modifications. These were included in the train-
ing set, so images including these could be incorrectly
classified.

• A major limitation of the dataset is the limited num-
ber of games that we included. There are thousands
of popular games on the market today, and our dataset
only contains 12 different games to act as a proof of
concept of the model. A production version of this
concept would need to be trained on thousands of dif-
ferent classes.

4. Method
Our method used to classify video game screenshots con-

sists of preprocessing the image, then using that as an input
to a pretrained SqueezeNet model. We then use the outputs
of the SqueezeNet as inputs to a SVM classifier which out-
puts its prediction of which game the screenshot is.

4.1. SqueezeNet

The pretrained SqueezeNet model that we used was in-
cluded with Pytorch along with the SVM used for classifi-
cation based on SqueezeNet outputs.

Figure 2: A portion of SqueezeNet’s architecture.

This model takes a 224x224x3 input and outputs a vec-
tor of 1000 classes. We then use this as an input into a
SVM with an output dimension of 12 (the number of our
games). So to train the SVM, we evaluated Squeezenet on
our training set and use those outputs as training inputs for
the SVM, which was evaluated on the labels originally gen-
erated. Evaluation worked the same way, where Squeezenet
was first evaluated and then SVM evaluation was run.

4.2. CNN

We also tested our SqueezeNet-based classifier against a
baseline CNN implementation.



Figure 3: The CNN architecture.

The CNN used is composed of two 3x3 convolutional
layers each followed by a 3x3 maxpool layer, with two fully
connected layers at the end. The final linear layer’s output is
of size 12, which is the number of classes (1 for each game).
ReLU is used as the activation function, and is applied to
the outputs of each convolutional layer before maxpooling.
Activation maps are obtained by observing the output of the
final convolutional layer during model evaluation and aver-
aging each of the channels to form a single heatmap.

The hyperparameters used for training the CNN were:
batch size=64, learning rate=1e-3, weight decay=1e-5, and
num epochs=10.

4.3. Twitch App

We then created our own app for Twitch streamers that
can automatically take screenshots, run our trained model
on the screenshots, and then use the output to update the
current stream information on the Twitch stream. The appli-
cation works as a locally hosted web server built on Python
(Flask) with an HTML/CSS3/Javascript browser interface.

Figure 4: A screenshot of the web interface for our auto-
classifier app.

The app runs as follows:

1. Authenticate with Twitch (OAuth)

2. While the classifier is running, once per second:

(a) Take a screenshot

(b) Analyze the game in the screenshot using the
classifier

(c) Based on the past M screenshots, find the game
g to which the highest fraction of recent screen-
shots belong γ

(d) If γ > a confidence threshold γ∗, update the
Twitch stream information

By analyzing multiple screenshots over time rather, the
application can significantly reduce error from the classi-
fier’s single-image accuracy rate.

Given that there are N classes (games), the trained clas-
sifier has a single-image accuracy rate of αs, the past M im-
ages are considered when guessing the current game being
played, and a confidence threshold of γ∗, we can calculate
the error rate ζapp of the application. Specifically, we want
to know how likely it is that, if a game exceeds the threshold
γ∗, it is the wrong game.

Let the single-image error rate of the classifier be ζs =
1− αs and d = γ∗M for convenience.

Assuming that each of the incorrect games has the same
chance of being chosen:

The probability an image is incorrectly classified as a
specific game is:

ζs
N − 1

The probability a particular incorrect game is chosen ex-
actly d times out of M is:(

M

d

)(
ζs

N − 1

)d(
1− ζs

N − l

)(M−d)

Neglecting the chances that multiple games exceed the
γ∗M threshold, the probability that a particular incorrect
game is chosen at least d times out of M is:

ζapp
N − 1

=

M∑
k=d

(
M

k

)(
ζs

N − 1

)k (
1− ζs

N − l

)(M−k)

Using a program or spreadsheet, the above equation can
be plotted to determine the effect of M and d on ζapp, given
our classifier’s accuracy.

There is a clear trade-off between d and the speed with
which the application recognizes the current game being
played and updates the stream accordingly. If the appli-
cation takes screenshots at a rate of 1 image per second, d
= 3 means the earliest the application could detect a game
change is 3 seconds after the game has been changed.

With M=10 and d=3, ζapp = 1.2e − 4. This is an ex-
tremely low error rate, so there is no need to increase d
and M. Since streams often last on the order of hours, we
believe even a 10 second delay (d=10) would be accept-
able to streamers. In that case, M=40 and d=10 results in



ζapp = 3.1e − 14. Additionally, even if the app misidenti-
fies the game, it would likely fix its mistake soon after.

Earlier, we assumed that each of the incorrect games had
the same chance of being chosen by the classifier. This is a
bad assumption given that some games have similar visual
styles (from being built in the same game engine to even
sharing assets). This can be remedied by increasing zetas
by a safety factor.

Using a safety factor of 3, tripling ζs from 0.05 to 0.15,
using M=10 and d=3 again, ζapp only increases to 3.1e-3.

There are additional considerations that could affect the
application’s performance, such as the presence of non-
game screenshots (e.g. when the streamer switches to their
desktop) and game screens that weren’t included in our
dataset (e.g. title screens and some menus). A future con-
sideration could be to output the softmax of the neural net-
work’s output and set a certainty threshold such that a game
update will not occur unless the certainty is above a given
point, even if a classification is repeated multiple times with
low certainty.

5. Experiments
In order to determine the performance of our networks,

we ran them both on a randomly chosen test subset of our
collected dataset (that does not overlap with our training
or validation sets). The accuracy results are summarized
below:

Network Accuracy
CNN 95.31%

SqueezeNet 50.23%

Table 1: Network Test Accuracy

As seen by the above results, our baseline CNN classi-
fier performed much better for this task than the pretrained
SqueezeNet model with SVM. While both had accuracy sig-
nificantly above the threshold for statistical significance, the
CNN performed almost twice as well as the SqueezeNet
classifier. We believe this large difference in performance
is due to the fact that the pretrained SqueezeNet is trained
using ImageNet and not games. Therefore, it likely has dif-
ficulty picking up on the features that are needed to recog-
nize games (like UI), and instead focuses on features like
the objects that appear on screen (people, vehicles, etc.).
These features can not necessarily be used to categorize
games since many games contain multiple classes of ob-
jects and the same kinds of objects as other games (for ex-
ample, Counter-Strike and Grand Theft Auto both contain
buildings, people, and weapons). However, since the CNN
was trained from scratch using only our dataset, the features
that it has learned to detect are specific to classifying video
games, like game HUDs and text.

5.1. Pretrained SqueezeNet with SVM

Since the results of the pretrained SqueezeNet with SVM
are disappointing (50%), we will focus mainly on the re-
sults of the successful CNN classifier. However, the failure
of pretrained Squeezenet to classify these screenshots ac-
curately is an interesting lesson in how CNNs need to be
trained to detect the features that are relevant to the prob-
lem at hand instead of arbitrary pretrained classes that are
irrelevant to the classification task that the network is being
used for.

5.2. Baseline CNN

Training of our CNN was very successful, with 10
epochs taking around 20 minutes to train on Google Colab.

Figure 5: Training loss of CNN across epochs.

While the overall accuracy of the CNN across all classes
was 95%, across the different classes the accuracy varies
significantly. While it performs very well (99.3% across 64
batches) at classifying League of Legends, it struggles with
Rocket League (85.3%) and Slenderman (84.4%).

Figure 6: Accuracy of CNN across all games.

One possible reason for this discrepancy are differences
in the consistency of the UI. League of Legends and Hearth-
stone have a very consistent UI, while Slenderman has no



real UI and Grand Theft Auto changes its UI depending on
the situation (cutscenes, first person view, etc.). An inter-
esting low performer that this difference does not explain,
however, is Rocket League. Rocket League has a very dis-
tinct style and consistent UI appearance, yet the network
performs poorly at categorizing it. Some possible reasons
for this are that its UI could look similar to another game
in screenshots, or that there are a large number of outliers
(menus, loading screens, etc.) in the data.

Figure 7: Heatmap of predicted vs. correct class.

It can be seen from this heatmap that while our classifier
generally performs well on every class, there are a few in-
correct predictions that are more common than others. The
most frequent incorrectly prediction is Rocket League be-
ing classified as Grand Theft Auto. Other common mis-
predictions include Grand Theft Auto being classified as
Minecraft, and Slenderman being classified as Grand Theft
Auto or Hollowknight.

5.3. Class Activation Maps for CNN

In order to better understand how our CNN classifier is
identifying features in our game screenshots to base its de-
cisions off of, we decided to generate class activation maps
for the CNN. From these we can see that our CNN primarily
activates on UI features and other elements such as charac-
ters that are consistent across many screenshots of a game.

(a) Input (b) Activation Map

Figure 8: Activation Map for Hearthstone

The above images are an example of a correctly identi-
fied image from Hearthstone. In the activation map, it can
be clearly seen that the CNN is detecting the cards, the Hero
in the lower and upper center, as well as the move history
UI on the left side of the screen. The outline of the board
itself is also clearly visible in the activation map.

(a) Input (b) Activation Map

Figure 9: Activation Map for League of Legends

Similarly to Hearthstone, the primary features high-
lighted on the activation map for League of Legends are
UI features common across the game, namely the HUD and
minimap at the bottom of the screen. However, it can also be
seen that the player’s character in the middle of the screen
is clearly highlighted as well.

(a) Input (b) Activation Map

Figure 10: Activation Map for Fortnite



Fortnite is quite different from the other two games in
terms of what is identified, in that while the UI is high-
lighted, the main feature that activates the CNN is actually
the player character. This is likely due to the fact that Fort-
nite is a 3rd person game, so the player character appears
consistently for most of the dataset.

Another interesting thing that the activation maps for the
CNN can do is give us some insight as to why some classi-
fications were made incorrectly.

(a) Input (b) Activation Map

Figure 11: Activation Map for Smash

The above Smash screenshot was classified incorrectly
as Hollow Knight. Interestingly, the only feature high-
lighted strongly in the activation map was the clock in the
top right corner of the screen. This highlighted feature is
similar to the UI feature typically present in the top left hand
corner of Hollow Knight screenshots.

(a) Input (b) Activation Map

Figure 12: Activation Map for Grand Theft Auto

The above Grand Theft Auto screenshot was misclassi-
fied as being from Slenderman. This is a fairly common is-
sue with some of the indoor dialogue cutscenes from Grand
Theft Auto. The primary feature detected in the CNN acti-
vation map is the person in the middle of the screen, which
is highlighted in the activation map very similarly to the
Slenderman in Slenderman screenshots. The person in this
screenshot is wearing a very similar suit to the Slenderman,
and since this is a cutscene there is no HUD, so this mis-
taken classification is understandable.

6. Conclusions
We have shown that the task of video game classification

is very much within the realm of practicality with currently
available technologies. We were able to achieve a high ac-
curacy when predicting between 12 classes of video games
while using only a basic CNN trained on relatively weak
hardware. On the other hand, SqueezeNet did not perform
well for this task, likely due to it being pretrained on a dif-
ferent dataset and the SVM on top of it not being able to
make up the difference.

Given the resources of a large company like Twitch, it
would not be out of reach to train a larger CNN using more
powerful hardware and a much larger dataset encompass-
ing the library of games which are commonly streamed on
Twitch. Additionally, we have also shown that even with
a somewhat sub-optimal accuracy, it is possible to drasti-
cally reduce the false positive rate when classifying contin-
uous streams or videos by only accepting a title update af-
ter a certain number of repeated same classifications. This
makes automatic classification of gaming streams robust
and shows that automated systems utilizing the techniques
we outlined are deployable in the near future.

References
[1] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W.

J. Dally, and K. Keutzer. Squeezenet: Alexnet-level ac-
curacy with 50x fewer parameters and ¡ 0.5MB model
size. arXiv:1602.07360v4, 2016.

[2] Joshy. Playing Fortnite Battle Royale For 10
Hours Straight. Apr 2018. URL: https://www.
youtube.com/watch?v=7nc5cjHC67M

[3] ViperSniper999. Fifa 20 basically the WHOLE 10
HOURS stream part 1. Sep 2019. URL: https://
www.youtube.com/watch?v=F5K_DRK7TgE

[4] TidesofTime. PLAYING EU TODAY 8.1k mmr #1
world !leaderboards. Nov 2019. URL: https://
www.twitch.tv/videos/509053546

[5] AbnormalPersona . FIGHT ME !arena. Nov 2019.
URL: https://www.twitch.tv/videos/
509180302

https://www.youtube.com/watch?v=7nc5cjHC67M
https://www.youtube.com/watch?v=7nc5cjHC67M
https://www.youtube.com/watch?v=F5K_DRK7TgE
https://www.youtube.com/watch?v=F5K_DRK7TgE
https://www.twitch.tv/videos/509053546
https://www.twitch.tv/videos/509053546
https://www.twitch.tv/videos/509180302
https://www.twitch.tv/videos/509180302

